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Abstract: Scattering imaging through thick scattering media is often hindered by extremely
low signal-to-noise ratios (SNRs) due to the ballistic-photon signal becomes negligible. To break
through the super low SNR limit, we propose a diffuse light field imaging model (DLIM) to
retrieve forward-scattered photons as signals. In this model, a diffuse source is constructed in
an angular accumulated light field image by synthesizing the radiance sources captured from
various view images. After that, the clear image could be solved analytically as a source term
based on the diffusion equation by deconvoluting the diffuse Green function, which builds the
diffuse light field convolution theorem. To demonstrate the physical process mathematically, we
propose three-plane parametrization, which facilitates the derivation of DLIM from radiative
transfer in each view image to diffuse approximation in the synthesized light field image. This is
the first physically-aware scattering light field imaging model, extending the conventional light
field imaging framework from free space into diffuse media. Extensive experiments confirm
that the DLIM can reconstruct the target objects even when scattering light field images are
reduced to random noise at extremely low SNRs. Compared to state-of-the-art scattering light
field imaging methods like peplography, the proposed method outperforms by 1.70 dB/4.76
dB peak-signal-noise-ratio (PSNR) and 0.167/0.172 structural-similarity-index-measure (SSIM)
higher, on average, for passive-luminous/self-luminous targets, respectively.
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1. Introduction

Imaging through discorded media is hampered by random scattering events of photons, which
has been a long-standing challenge for optical imaging. Scattering imaging under natural light is
beneficial to many fields, such as auto-driving, underwater exploration, aviation safety, and so on.
Unfortunately, imaging through highly scattering media is challenging because the propagation
paths for most of the light are randomly disturbed and become scattering light, resulting in
noise in the image, only slight ballistic photons produce signal. The scattering light consists of
forward scattering photons reflected by object and backward scattering photons that are only
reflected and refracted by scattering media. Jaffe-McGlamery (J-M) physically model above light
components for simulation of underwater imaging [1,2]. By ignoring forward scattering photons,
the J-M model can be simplified as only including direct light and atmosphere light [3–6]. Based
on the simplified J-M model, various dehazing methods have been proposed, which aims to
remove scattering noise in image and improve the SNR of reconstructed images [3–20]. However,
the imaging capability is limited at weak scattering area, which is because the effective signal
provided only by ballistic photons drops off as scattering becomes stronger, causing super low
SNR. Thus, the utilization of scattering photon as signal becomes critical for SNR gain. Imaging
methods have been proposed for microscopic imaging with utilization of scattering photons by
exploiting speckle correlation [21,22], transmittance matrix [23,24], phase conjugation [25,26],
and wavefront shaping [27,28], etc. Although imaging through extremely thick scattering media
(several tens of optical thicknesses) is possible, they are limited to the coherent light source and
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microscale of the target, which are hardly applicable in imaging large targets under natural light.
Therefore, imaging large targets in strongly scattering media under natural light is challenging.

Light field imaging methods capture lights from multiple views with more ballistic photon
collection and noise suppression, which can improve imaging capability through scattering media
with higher SNR [29–37]. For instance, light field imaging methods aim to distinguish ballistic
photons from scattering photons by using the intensity consistency of ballistic photons in all
perspective images [29,30] and extract ballistic photons by assuming the Gaussian distribution of
scattering photons [31]. Moreover, the depth extraction of the light field using the J-M model
resolves the target information [32]. Peplography models scattering photons with statistical
estimation and extract the ballistic photons based on the photon counting model under an integral
imaging framework [33]. However, those methods rely on ballistic photon imaging and scattering
noise reduction, which limits the penetrated optical thickness.

Here, a physically-aware imaging model is derived leveraging the light field framework based
on radiate transfer theory, which is called diffuse light field imaging model (DLIM). Beyond
ballistic photon signal, it can convert the forward scattering photons into signal by solving
diffusion equation (DE). After that, the clear image could be solved analytically as a source term
based on the diffusion equation by deconvoluting diffuse Green function, which builds the diffuse
light field convolution theorem. To demonstrate the physical process mathematically, we propose
three-plane parametrization, which facilitates the derivation of DLIM from radiative transfer in
each view image to diffuse approximation in the synthesized light field image. Finally, the object
image can be reconstructed from the refocused scattering light field image using the diffuse
kernel with computational complexity O(N2logN) for N×N image resolution. In addition, the
backscattering photons (atmosphere light) still can be removed with some dehaze algorithms.
Compared with state-of-the-art scattering light field imaging method Peplography [30], the
proposed DLIM outperforms Peplography by 1.70 dB/4.76 dB Peak-Signal-Noise-Ratio (PSNR)
and 0.167/0.172 Structural-Similarity-Index-Measure (SSIM) higher, on average, for passive-
luminous/self-luminous targets, respectively. Well-known dehaze methods including image
enhancement and prior-based methods are mostly ineffective in experiments when addressing
these highly scattered images.

2. Proposed diffuse light filed imaging model

As shown in Fig. 1(a), in a linear light field imaging system, a quasi-point of impulse response
can be observed in the imaging plane for a conventional imaging system, and the images can be
represented by the convolution between light source distribution and point spread function (PSF)
as follows:

L(u, v, s, t) = LO(u, v, ξ, η) ⊗ hI(u, v, s, t), (1)

where L(u, v, s, t) is the light field images, LO(u, v, ξ, η) and hI(u, v; s, t) represent the distribution
of the light source and the point spread function (PSF) of imaging system, respectively.

In a scattering light field imaging, the ballistic photons can penetrate scattering media as
depicted by blue points, while the other two types of scattering photons are randomly distributed
in the imaging plane as depicted by red and green points as shown in Fig. 1(b). As a result, the
impulse response, in other words, the PSF of scattering light field becomes speckle patterns,
in which tiny highlights of intensities in images near ballistic-photon accumulated positions
can be observed as seen in Fig. 1(c). Here we assume another convolution term as scattering
impulse denoted by hS(u, v, s, t) to be introduced into the imaging process as defined in Eq. (2),
as depicted by Fig. 1(d).

L(u, v, s, t) = LO(u, v, ξ, η) ⊗ hI(u, v, s, t) ⊗ hS(u, v, s, t) (2)
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Fig. 1. The construction principle of light field imaging in scattering media. (a) The PSF of
conventional light field imaging without considering scattering effect. (b) The scattering
light field images consist of various scattering photons. (c) The PSF of scattering light
field images. (d) The scattering light field imaging framework that is represented by the
convolution between the object image and scattering PSF.

2.1. Three-plane parameterization

To derive the convolution kernel hS(u, v, s, t) of scattering light field imaging model conveniently,
a three-plane coordinate representation is proposed. The conventional two-plane parameterization
of light field only add another angular dimension to spatial dimension in imaging space to record
the emitting direction of light from object. This is under the condition that the direction of
u(u, v) → s(s, t) is equal to the emitting direction of light from object to camera, since only line
transport of light is involved. However, in the diffuse light-field framework, the direction of
u(u, v) → s(s, t) is not equal to the emitting direction of light from object to camera, since not
only ballistic but also scattering photons came into u-plane and received by s-plane. Yet it is
critical to model both ballistic and scattering photon in our modeling process. Thus, how to
describe the radiance in spatial and angular dimensions of both ballistic and scattering photons
under light field framework is vital to clearly unfold the mechanism of scattering light field
imaging. In the proposed three-plane parameterization, to separately describe the ballistic and
scattering photons, we add another plane ξ= (ξ, η) in object space and using the two-plane
coordinates of ξ-u to specifically describe the radiance of ballistic photons, such as L(ξ, u),
since those line-transported photons from object plane ξ to camera plane u must be ballistic
photons. The radiance of scattering photon are represented as L(u, s) using another two-plane of
u-s. As seen in Fig. 2(a), for simplicity, only one dimension for each plane is considered for each
plane and all derivations are appropriate for the two-dimensional plane cases. For example, the
radiance of the object point ξ0 towards u1 is denoted as L(−−−→ξ0u1), and the radiance received in
pixel s1 coming from u1 is denoted as L(−−−→u1s1). Noting that the L(−−−→ξ0u1) is only ballistic photon,
whereas the L(−−−→u1s1) could be ballistic, scattering photons or mix of them. In particular, we
add another auxiliary plane, the k-plane between object plane and camera plane to describe the
radiance of incident scattering photons came to camera plane for constructing radiative transfer
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function as seen in Fig. 2(b). Then the key component is how to construct the relation of radiance
for those ballistic photons, scattering photons under light field framework with above three-plane
parameterization, which will be demonstrated in next section.

Fig. 2. The schematic illustration of physical process for diffuse light field imaging. (a)
Analysis of radiance distribution in light field images considering both scattering and ballistic
photons. (b) Example of radiance L(−−−→u1s1) contributed by ballistic and scattering photons.
(c) The explanation of diffusion approximation for radiate light field imaging. (c-1) The light
source radiate photons consist of ballistic and scattering photons into image plane, where
the photons in s1, s2 can be regarded as radiated from the radiate source s0. (c-2) the diffuse
source s0 must be a concentric source radiating photons towards various directions. (c-3)
Construction process of diffuse source in angular accumulated light field image containing
ballistic photons from various directions. (c-4) The projection explanation that ballistic
photon captured from various views contribute to a concentric diffuse source in angular
accumulated light field image. (d) General schematic of diffuse source ∅b(s) leveraging light
field imaging framework. (e) Forward framework of diffuse light field imaging modeling
(DLIM).

2.2. Radiative light field imaging model

Radiative light field model refers to analyzing the radiance distribution in scattering light field
images with three-plane parameterization. Here we take only one of light field perspective u1 as
an example. The received radiance is contributed by two terms composed of ballistic photons
and scattering photons as defined by

L(−−→u1s) = Lb(
−−→u1s) + Ls(

−−→u1s), (3)

where Lb(
−−→u1s) indicates the ballistic term and Ls(

−−→u1s) means the scattering term as depicted by
black and green line in Fig. 2(a) [35]. Here the ballistic photons are attenuated as the distance
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between camera and object increases, as defined by

Lb(
−−→u1s) = L(

−−→
ξu1)exp(−µs |

−−→
ξu1 |), (4)

where the µeff = µa+ µs
′ is the effective attenuation coefficient, and µa and µs

′ are the absorption
and reduced scattering coefficients [35]. The scattering photons Ls(

−−→u1s) consists of single and
multiple scattering photons as depicted by blue and green lines between ξ and u planes in
Fig. 2(b), can be mathematically described as

Ls(
−−→u1s) = µs ∫ L(

−−→
ku1)p(

−−→
ku1,−−→u1s)dk, (5)

where k means the coordinate in the auxiliary plane before camera plane as seen in Fig. 2(b)
and p(

−−→
ku1,−−→u1s) is the phase function. Thus, based on energy conservation, a partial differential

equation can be constructed as
−→us · ∇L(−→us) + µeff L(−→us) = Lb(

−→us) + Ls(
−→us). (6)

It is revealed that the received scattering radiances distribution L(−→us) is correlated to the object
radiance through attenuated source term Lb(

−→us) according to above radiate transfer equation
(RTE), since Lb(

−→us) is linearly attenuation version of the object radiance L(−→ξu) according to
Eq. (4). Thus, if the source term Lb(

−→us) can be reconstructed from scattering term L(−→us), the
object radiance will be obtained as a result. To solve above equation, the Green function
can be introduced. Let’s assuming an impulse object source, such as δ(|−→ξu| − |

−−→
ξ0u|), then

Lδ
b (
−→us) = L(δ(|

−→
ξu| − |

−−→
ξ0u|)) exp(−µs |

−−→
ξ0u|). Let Lb(

−→us) = Lδ
b (
−→us) in Eq. (6), the solution is an

impulse response of this system, which is called Green function and denoted as LG(−→us). Then the
radiance distribution in imaging plane of perspective u can be modeled as convolution between
ballistic radiance distribution Lb(

−→us) and Green function LG(−→us) as

L(−→us) = Lb(
−→us) ⊗ LG(−→us) (7)

The Green function can be solved by expanding radiance with spherical harmonics, an infinite
approximation to RTE is obtained. The PN approximation means taking the first N spherical
harmonics, which gives (N+ 1)2 coupled partial differential equations. Diffusion approximation
as the P1 approximation to RTE has wide usage in biological imaging [38–40]. When imaging
distance larger than ℓt that is transport mean free path and the media is isotropic, the radiate
transfer is well described by diffusion equation [41,42].

2.3. Diffusion approximation of radiative light field imaging model

Leveraging the light field imaging framework, we can capture discrete radiances L(−→us), if we
accumulate various angular light field images, the accumulated light field can be approximated as

∫ L(−→us)du = ∫ Lb(
−→us) ⊗ LG(−→us)du. (8)

It means the angular accumulated scattering light field image can be composed as superposition
of all perspective scattering images resulted by one clear image, such as Lb(

−→us) convoluting one
radiate impulse function, such as LG(−→us). To obtain the analytic solution of target signal Lb,
assuming the homogeneous and isotropic scattering media, the Eq. (8) is transformed into

∫ L(−→us)du = ∫ Lb(
−→us)du ⊗ ∫ LG(−→us)du. (9)

The last term is noted as ∅G(s) = ∫ LG(−→us)du, which becomes into the impulse function of
fluence rate in diffuse system [35,38], which can be solved from diffuse equation as defined in
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Eq. (10),
D∇2∅(s) − µa∅(s) = ∅b(s), (10)

where D is the diffuse coefficient 1/ (3*(µa+µs(1 − g))), g is the isotropic coefficient [35]. We
can use the Neumann boundary ( ∂∅

∂r⃗ = 0) to solve Eq. (8) [38,39]. The mathematical procedure for
solving DE can be found in any literature refer radiate transfer. Here we give the result directly,
which is defined as

∅G(s) =
1

2√µaD

(︂
e−
√

µa
D |s−s0 | + e−

√
µa
D |s+s0 |

)︂
(11)

Noting that a diffuse sourced term is constructed by accumulating angular perspective light
field images, specifically ∅b(s) = ∫ Lb(

−→us)du = γ ∫ L(
−→
ξu)du, where γ = exp(−µs |

−→
ξu|) is the

Lambert-Beer attenuation ratio. Simply, the diffuse source can be defined as ∅b(s) = ∅(ξ)γ(s),
where coordinates ξ and s have been matched by imaging system and γ(s) = exp(−µsz(s)).

The physical process is demonstrated as seen in Fig. 2(c). Assuming a point light source at
ξ0, it radiates photons to various directions and the scattered photons reach pixels of imaging
plane randomly, such as s1= [s1, t1; z+ f ], s2= [s2, t2; z+ f ], where f is focusing length of
imaging lens. As seen in Fig. 2(c-1), the photon diffuse route from source to sensor pixel
(ξ0 → s1), ξ0 = [ξ0, η0; 0], could be approximated by two parts containing line transport of
ballistic photon (ξ0 → s0), s0 = [s0, t0; z], and the diffusion process in imaging plane (s0 → s1),
same as other pixels, such as s2. This is enabled under a precondition that a diffuse source
exists in imaging plane, which allows all pixels in imaging plane can be diffused by this source
as seen in Fig. 2(c-2). In the light-field approximation model, the diffuse source is formed
by accumulating radiance coming from various directional ballistic photons of object source
leveraging multi-view capturing. That is, taking advantage of light field imaging framework,
all directional object radiance will be integrated by refocus and then a diffuse source ∅b(s0) is
constructed in synthesized light field image as an attenuated radiance source as seen in Fig. 2(c-3),
as a result the whole angular accumulated light field image can be the diffuse result of this source
term. More specifically, assuming a grid of capture spots as shown in Fig. 2(c-4), each projection
of the lines of ballistic photon transport from the object source to each view will contribute one
concentric radiance to the diffuse source in the angular accumulated light field image.

For instance, an object point source ξ0 radiates photons towards various directional, such as
−−−→
ξ0u1. and −−−→

ξ0u2, will be integrated as diffuse source at pixel s0 of angular accumulated light field
image with attenuated energy as seen in Fig. 2(d).

In the original light field imaging equation of Eq.(2), hI(u, v, s, t) ⊗ hS(u, v, s, t) can be
combined as radiate kernel hIS(u, v, s, t), which can be obtained by setting the radiate Green
function LG(u→s), u = [u, v; z], s = [s, t; z + f ] as hIS(u, v, s, t) assuming hI(u, v, s, t) is an
idea impulse response. According to the theorem of filtered light field photography, the 4-D
convolution of light field can be simplified as 2-D convolution, as defined

Pα ◦ C4
K
≡ C2

Pα [K]
◦ Pα (12)

where Pα is the refocus operator defined as

Pα[Lf ](s, t) =
1
α2f 2

∫∫
Lf

(︃
u
(︃
1 −

1
α

)︃
+

s
α

, v
(︃
1 −

1
α

)︃
+

t
α

, u, v
)︃

dudv, (13)

where α = f
f+z . The CN

K
is an N-dimensional convolution operator with filter kernel K [43].

Based on the convolution theorem of light field, with the derived diffusion light field imaging
model, this theorem can be extended into scattering light field as diffuse light field convolution
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theorem by setting the integral of 4D filter kernel as a diffuse kernel, i.e.,

Pα[K] = ∅G(s) = Pα[LG(u → s)]. (14)

The above forward process is illustrated heuristically by the diagram in Fig. 2(e). The radiances
of an object with the source distribution L(ξ, η) are received by the sensors through different lenses
at (u1, u2, u3, . . .). The received radiance are represented as radiate source convolving radiate
kernel (Lb(u → s) ⊗ LG(u → s)). Leveraging theorem of filtered light field photography, we can
refocus Lb(u → s) and LG(u → s) separately, so that a diffuse source ϕb(s, t)= γ(s, t)J(s, t) and
diffuse kernel ∅G(s, t) can be obtained. By the way, J(s, t) can be clear image of the object source
without scattering. Finally, the refocused scattering light field image ∅(s, t) can be represented
as an implicit object source distribution ϕb(s, t) convoling the diffuse kernel ∅G(s, t), the clear
image J(s, t) is equal to ϕb(s, t) dividing γ(s, t).

Backward-scattering modeling is required for imaging in dealing with nature scattering
environment, in which the back scattering photons without reaching object are involved as strong
noise.

Here, we combine the proposed DLIM and simplified J-M model to account for forward
scattering lights, backscattering lights, ballistic lights, and light source distribution under light
field imaging framework as defined by

J∗(s, t) = ϕb(s, t) ⊗ (∅G(s, t) + 1) + B∞(1 − γ(s, t)) (15)

where J∗(s, t) is the refocused scattering light field image, ϕb(s, t) = γ(s, t)J(s, t) is the distribution
of attenuated object source, J (s, t) is the refocused clear light field image, the ballistic attenuation
ratio γ(s, t) is the same as the medium transmission in J-M model and B∞ indicates the atmosphere
lights, respectively. Here the wavelength is not discussed in whole model derivation, although it
is also correlated with the scattering effect, but is out of the scope of this research.

The recovery from the scattering image J∗(s, t) to original image J(s, t) is an inversion
procedure of DLIM, which is accomplished by deconvolution using diffuse kernel ∅G(s, t). A
closed-form solution exists using the Wiener deconvolution filter:

Ĵ = F−1 ◦

⎡⎢⎢⎢⎢⎣
ΦG

|ΦG |
2
+ 1

ζ

⎤⎥⎥⎥⎥⎦ ◦ F ◦ J∗. (16)

where F denotes the discrete Fourier transform matrix, ΦG is the diagonal matrix whose elements
correspond to the Fourier coefficients of the diffuse kernel ΦG, ζ is a parameter that varies
depending on the signal-to-noise ratio at each frequency, and Ĵ is estimated original image. The
computational complexity of the above equation is only O(N2logN) for N×N image resolution.
Noting that the self-luminous object will not require modeling backscattering photons. For
example, various LED panels for advertisement at night, vehicle lights, diffuse optical tomography
(DOT) in biological imaging, optical fiber imaging, e.g., whose scattering images are contributed
only by forward scattering and ballistic photons. Notably, the optical thickness can be estimated
using visibility multiplying |log0.05|, which can be measured with a Nephelometer for fog
environments [44]. Then the scattering coefficient can be evaluated from optical thickness and
depth that can be obtained with laser distance meter for outdoor environments. The exponential
of optical thickness can be regarded as attenuation ratio.

In the case of inversion procedure of backward scattering modeling, the Dark Channel Prior
(DCP) as one of well-known J-M based algorithm is used to estimate the transmittance considering
atmosphere light [5]. Then the recovered image by DCP will mainly contain forward scattering
photons, which can be further reconstructed by using DLIM, which provides further signal from
forward scattering photons.
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3. Experiments and results

To verify the effectiveness and demonstrate the imaging capability of the proposed DLIM, the
imaging experiments for both self-luminous and passive-luminous objects through dense fog
under light field imaging framework have been conducted. The self-luminous experiments aim to
confirm the reconstruction capability of DLIM by utilizing forward scattering photons, whereas
the passive-luminous experiments aim to confirm its effectiveness with strong noise caused by
back scattered photons. The experimental scheme is shown in Fig. 3(a), in which different angles
of light emitted from the target object are captured by cameras from different views, which are
synthesized into the final fluence rate image with the refocus operation. Moreover, in terms of
several critical factors effecting diffuse light field modeling, the simulation experiments using
physical-based rendering platform have also been carried out to accurately control the relative
coefficient values and the experimental results are carefully analyzed.

Fig. 3. The diagram of experimental system. (a) Experimental schematic of scattering
light field imaging. (b) The experimental set-up. (c) Light and camera system. (d)The
measurement system of optical thickness of scattering media. (e) The targets contain
self-luminous LED light panel and passive-luminous target of printed foam board.

3.1. Execution of a comprehensive experimental setup

In practical experiments, the targets emerge into volumetric scattering media that is built by a fog
chamber, and the cameras are placed behind the chamber in discrete capture positions. When
calibrating the light field imaging system, the homography for each perspective is estimated by
capturing checkboard images without filling the fog according to Zhang’s method [45].
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As shown in Fig. 3(b), the fog chamber mainly consists of an ultrasonic fog generator, a light
and camera system, a measurement system of optical thickness, and the targets. The camera
system is mounted outside the fog chamber. It consists of 9 cameras in a row and all cameras are
connected to a synchronous signal generator to ensure the synchronous triggering (see Fig. 3(c)).
Each camera consists of a 4 mm lens and a CCD (Flir BFS-PGE-16S2; pixel size, 3.45 µm× 3.45
µm; resolution, 1440× 1080). The illumination consists of four independent strip light sources
(BRD36030), which are set for experiments of passive-luminous light field imaging, and switched
off for experiments of self-luminous light field imaging. The system for measuring the optical
thickness of scattering media consists of a laser with a wavelength of 480 nm, a power meter, a
filter and apertures, as shown in Fig. 3(d). Among them, the filter and diaphragms are to filter
out scattering photons and only ballistic photons can be collected by the power meter to make the
measurement more accurate. The optical thickness can be defined as T = log

(︂
Po
Pa

)︂
, where Po and

Pa are the original laser power without scattering and the attenuated laser power by the scattering
effect of fog, respectively [44]. To test the imaging capacity of the proposed methods, four group
of self-luminous and three passive-luminous light field images were acquired through dense fog.
The targets for self- and passive- luminous images are shown in Fig. 3(e). The self-luminous
targets are the capital letters ‘T’, ‘H’, ‘U’ and a number ‘2’ displayed on the LED panel with an
upward motion, and the acquisition frequency is set to same as the motion frequency of letters.
The self-luminous light field images contain a total of 8 horizontal and 16 vertical perspectives.
The passive-luminous light field images consist of only 9 horizontal perspectives, which allows
the image to be captured in a single step. The optical thicknesses for self- and passive- luminous
experiments are measured as approximately OT =10 and 9 respectively. Explicitly, the thickness
of fog is 0.7 m which is measured from the target to the front of the camera lens. For the optical
thickness measurement system, the distance from the laser source to the power meter is 0.5 m.
The original value of the power meter is 0.339W, and the corresponding value for capturing after
filling with fog is 5.63e-4W, so T= 6.4 correspondingly. Considering that the distance ratio
between the target object and the camera compared with the one between the laser and the power
meter is about 1.4, the final optical thickness is about 9. For self-luminous objects, the distance
between the target object and the camera lens is about 0.8 m, which means that the distance ratio
becomes about 1.6, so the OT equals 6.4× 1.6≈10. Even in artificial experimental environments
such as a fog chamber, the optical thickness measurement is not accurate due to the fluctuations
of the fog density during image acquisition. The exposure time is set as around 33 ms.

3.2. Verification of DLIM for self-luminous and passive-luminous objects through dense
fog

To verify the scattering imaging capacity of the proposed DLI M, 4 group experiments were
performed for different self-luminous targets ‘T’, ‘H’, ‘U’ and ‘2’ with different colors and
intensities (see (a)-(d) in Fig. 4). As seen in Fig. 4, the first column refers to self-luminous
target images for the capital letters ‘T’, ‘H’, ‘U’ and the digit ‘2’ as ground truth (GT). The
second column shows one of the perspective images of scattering light field images that were
normalized, and the third column shows the scattering light field images synthesized from
8horizontal× 16vertical perspective images. And the fourth column shows the reconstructed
results of scattering light field images for each target by using the proposed DLIM method. Note
that the density of fog is hard to be controlled to be stable and consistent during capturing for
each target, which will cause fluctuation of real optical thickness for different targets. From
the captured perspective images, the differences of real scattering strength for different targets
can be recognized, even if all scattering images for the targets are captured aiming at identical
scattering conditions with the same optical thickness. The curves of intensity in one row of
image are shown in (e)-(h) of Fig. 4. It is obvious that the single perspective image for all targets
has a very small dynamic range, from which any target information is impossibly recovered. The
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curves of refocused light field images are all Gaussian converged, which is also consistent with
our derived diffuse approximation. This shows that the diffuse source is indeed constructed in
the refocused image and the whole image is the result of source diffusion. The targets ‘U’ and
‘2’ have higher intensity compared with ‘T’ and ‘H’, which aims to verify that if the improved
intensity of the light source can enhance reconstruction quality. As seen in (c), (d) and (g), (h) of
Fig. 4, the dynamic ranges of intensity-improved perspective images are further shrunk, and a
smoother curve is observed for the light field images, but the reconstruction quality of DLIM is
not improved. This reveals that the slightly higher intensity of the light sources cannot improve
the reconstruction quality of DLIM. This differs from ballistic-photon-based methods, whose
imaging quality is directly correlated with the intensity of light source. All targets are successfully
reconstructed from the scattering light field images using the proposed DLIM method. In contrast,
the targets are impossibly resolved from refocused light field images directly, even though the
speckle noise suppressed and ballistic photons have been accumulated.

Fig. 4. Experimental results of verification for self-luminous targets by using DLIM. The 1st

column refers to self-luminous target images. The scattering images for each target are shown
in 2nd column. The light field images are shown in 3rd column. The DLIM-reconstructed
results of scattering light field images are shown in 4th column. Images for self-luminous
targets of ‘T’, ‘H’, ‘U’, ‘2’ are shown in (a)-(d), and the curves corresponding to one intensity
line of left images are shown in (e)-(h), respectively.

The ground truth image is shown in Fig. 5(a), the single perspective scattering image is shown
in Fig. 5(b), and the refocused scattering light field image is shown in Fig. 5(c). The optical point
spread functions (PSFs) retrieved from single perspective scattering image with ground truth
image is shown in Fig. 5(d), whereas the PSF retrieved from refocused scattering light field image
with ground truth image is shown in Fig. 5(e). The calculated diffuse kernel PSF is shown in
Fig. 5(f). The corresponding frequency spectrum of Fig. 5(d), (e) and (f) are shown in Fig. 5(g),
(h) and (i), respectively. Noting that a dominant low frequency component representing ballistic
photons is informed in light-field PSF and non-informed in single perspective PSF, but it exists
in the frequency spectrum of calculated diffuse kernel PSF. This is the intrinsic principle that
the scattering light field image satisfy the diffuse equation, since the low frequency components
construct a ballistic-photon caused diffuse source with light field imaging framework. The
reconstructed images from single perspective scattering image and refocused scattering light
field image with corresponding ground-truth-retrieved PSFs are identical, as seen in Fig. 5(j).
However, with the calculated diffuse kernel PSF, they have completely different reconstruct
results. The reconstructed image from single perspective scattering image with diffuse kernel is
shown in Fig. 5(k), whereas the reconstructed image from refocused scattering light field image
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is shown in Fig. 5(l), which confirms the effectiveness of calculated diffuse kernel to scattering
light field image and the ineffectiveness to single scattering perspective image.

the fog density during image acquisition. The exposure time is set as around 33ms. 

Fig. 5. The point spread function (PSF) study of optical measured PSF and calculated
diffuse PSF for single perspective and light field images. (a) Ground truth image. (b) The
single perspective scattering image. (c) The refocused scattering light field image. (d) The
retrieved PSF from single-perspective-image-deconvolution using ground truth image (a).
(e) The retrieved PSF from refocused-light-field-image-deconvolution using ground truth
image (a). (f) The calculated PSF of proposed diffuse kernel. (g) The frequency spectrum
of retrieved single perspective PSF shown in (b). (h) The frequency spectrum of retrieved
light field image PSF (e). (i) The frequency spectrum of the PSF for light field image. (j)
The reconstructed image from single perspective image using retrieved PSF (d) or from light
field image using retrieved PSF (e). (k)The reconstructed image from singe perspective
image using calculated diffuse kernel (f). (l)The reconstructed image from refocused light
field image using calculated diffuse kernel (f).

Moreover, three groups of experiments are conducted for passive-luminous targets ‘T’, ‘Tree’,
and ‘Arrow’ to verify the effectiveness of the proposed method for scattering imaging in dealing
with backscattering photons as shown in (a)-(c) of Fig. 6. With our measurement equipment,
the optical thickness in this case is about 9, which is about 3 times visibility by using optical
thickness dividing |log0.05| [44]. As seen in Fig. 6, the images in the first column are ground
truth, the images in the second column are perspective images, the images in the third column are
light field images, the images in the fourth column are reconstructed images with the proposed
DLIM and the images in the fifth column are light field images reconstructed by using DLIM. The
backscattering photons lead to a strong background noise in DLIM-reconstructed images. Noting
that even though strong background noise covers the reconstructed target signal, the targets
are still visible in DLIM reconstructed images, which proves the effectiveness of utilization of
forward scattering photons for passive-luminous targets. Furthermore, the DLIM gains the best
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reconstruction quality with notable enhancements compared with the DLIM method. This shows
the importance of removing backscattering photons to improve the SNR of the reconstructed
image.

Fig. 6. Experimental results for passive-luminous scattering light field imaging. The 1st

column refers to ground truths (GTs) of targets ‘T’, ‘Target’ and ‘Tree’. One of perspective
images for three targets are shown in 2nd column. Light field images synthesized with
perspective images are in 3rd column. The reconstructed light field images with proposed
DLIM are in 4th column. The final reconstruction results with DLIM are shown in 5th

column. Experiment targets contain (a) ‘T’, (b) ‘Arrow’ and (c) ‘Tree’.

To quantitively evaluate the imaging capacity of DLIM when dealing with self and passive-
luminous scattering images, the two most used image evaluation matrix, SSIM and PSNR are
applied. The reference images are captured with the same light field imaging system without
fog. Furthermore, the scattering imaging method under the light field imaging framework,
Peplography is also implemented as a comparison of proposed methods [33]. In Peplography,
all scattering photons are reduced using statistical estimation, and then the ballistic photons are
accumulated using the photon counting model [31]. The input images for Peplography and DLIM
are single refocused scattering light field images. Figure 7 shows the target images, Peplography
reconstructed images and DLIM reconstructed images in (a)-(d). The SSIM of Peplography
reconstructed images for four groups of self-luminous targets of ‘T’, ‘H’, ‘U’ and ‘2’ are 0.002,
0.015, 0.029 and 0.048, whereas the DLIM reconstructed images have SSIM values of 0.049,
0.105, 0.266 and 0.363, respectively. And the PSNRs are 9.837, 14.766, 16.950 and 18.702 for
Peplography and 18.433, 19.382, 20.181 and 21.276 for DLIM, respectively. More importantly,
the self-luminous targets cannot be recognized from Peplography-reconstructed images but are
well observed from DLIM-reconstructed images as seen in (d) of Fig. 7. As seen in Fig. 8, the
SSIM of Peplography reconstructed images for three passive-luminous targets of ‘T’, ‘Arrow’,
and ‘Tree’ are 0.257, 0.255, and 0.228, whereas the DLIM reconstructed images are 0.519, 0.448,
and 0.273, respectively. And the PSNRs are 12.990, 12.721, and 11.652 for Peplography and
15.701, 12.333, and 14.418 for DLIM.

As seen in Fig. 9, for passive-luminous targets, the average PSNR of Peplography and DLIMP

are 12.454 and 14.151, indicating higher 1.70 PSNR gained by DLIMP, whereas the average
SSIM are 0.247 and 0.413 for them, indicating higher 0.166 SSIM gained by DLIMP. For
self-luminous targets, the average PSNR of Peplography and DLIMS are 15.061 and 19.818,
indicating a higher 4.757 PSNR gained by DLIMS, the average SSIM are 0.024 and 0.196,
indicating higher 0.172 SSIM gained by DLIMS.
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Fig. 7. Experimental comparison between Peplography and DLIM regarding self-luminous
scattering light field images. (a) Ground truth. (b) Refocused scattering light field images. (c)
Reconstructed images with Peplography. (d) Reconstructed images with proposed method.

backscattering photons to improve the SNR of the reconstructed image. 

Fig. 8. Experimental comparison between Peplography and DLIM regarding passive-
luminous scattering light field images.

Fig. 9. Statistic analysis of reconstruction quality with respect to PSNR and SSIM for
Peplography, DLIM and DLIM. (a) PSNR statistic result. (b) SSIM statistic result.
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Well-known dehaze methods including image enhancement and prior-based methods are
mostly ineffective when addressing these highly scattered images, which are experimentally
verified as extensive experiments. Supplement 1.

To study the effect of several critical model factors, such as number of perspectives of light
field, anisotropic factor of scattering media and optical thickness involved in diffuse light field
imaging model, the extensive experiments have been implemented to verify their influence to the
imaging capacity of proposed method and the three-dimensional imaging capacity, which can be
found in Supplement 1.

The currently proposed model assumes that the scattering medium is homogeneous and
isotropic. In practice, materials can have inhomogeneous scattering and absorption coefficients as
non-uniform density distribution of volume particles. The proposed technique could potentially
be extended to account for the non-uniform density of scattering media by modeling the variance
under average density when performing another convolution to the diffuse kernel. In the case
of serious anisotropy of media, then the diffusion approximation will be invalid. In this case,
high-order PN approximation can be used to obtain a solution for 4-D radiate light field kernel.

4. Conclusion

Optical imaging overcoming the scattering effect is challenging but significant for many fields.
In this paper, a diffuse light field model is proposed to construct a novel light field imaging
framework for optical imaging through highly scattering media. Moreover, by combining the
classical J-M model, a complete scattering light field model can be constructed, which is a
fundamental theoretical work that will feed more scattering imaging algorithms. Extensive
experiments have been conducted to confirm the superior imaging capacity of the proposed
methods compared to state-of-the-art scattering imaging methods for both of passive-luminous
and self-luminous targets. To the best of our knowledge, this is the first physically-aware scattering
light field imaging model, which might extend the light field imaging framework into scattering
imaging area.
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